5. (i) Explain the working of SR flip-flop.
(ii) Explain the working of serial in serial out shift register.
6. (i) Design and explain the working of a 8 to 1 multiplexer.
(ii) Design a Modulo- 5 counter and explain its working.
7. (i) Write a note on PROMs. Describe the selection logic used to select a device out of a 4 devices connected.
(ii) Differentiate ROM and EPROM.
8. (i) Differentiate between static and dynamic memory.
(ii) Draw read and write control timing diagrams for accessing and writing to a memory location.

Exam. Code : 105702
 Subject Code :
 1420

B.Sc. (Information Technology) ${ }^{\text {nd }}$ Semester PRINCIPLES OF DIGITAL ELECTRONICS
 Paper-I

Time Allowed-2 Hours] [Maximum Marks-75
Note :-There are EIGHT questions of equal marks. Candidates are required to attempt any FOUR questions.

1. (i) Describe Gray code. Convert 8 AB into Octal.
(ii) Convert the following :
(a) Convert (126.3) into hexadecimal.
(b) Convert 11010110010 into BCD.
2. Do the following :
(i) Find 1's and 2's complement of 45 .
(ii) Write the excess-three codes for decimal numbers 15 and 49.
3. (i) Simplify $\mathrm{F}=\Sigma(1,3,4,5,10,13)$ using Boolean algebra.
(ii) Write the steps of K-map simplification and simplify $\Sigma(2,3,8,11,13,15)$ using K-map.
4. (i) Simplify $\mathrm{F}=\Sigma(1,2,5,7,13)$ using Boolean algebra and design the circuit using NAND gates only.
(ii) Convert $(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{B}+\mathrm{C})$ into standard POS form.
